Transactions of the American Society of Civil Engineers, Vol. LXX, Dec. 1910 | Page 2

A. Kempkey
in outward appearance with the one built, but, owing to the natural conservatism of the local residents regarding this type of construction, it was not acceptable.
The tower, as built, consists of a hollow cylinder of plain concrete, 109 ft. high, and having an inside diameter of 22 ft. The walls are 10 in. thick for the first 70 ft. and 6 in. thick for the remaining 39 ft., and are ornamented with six pilasters (70 ft. high, 3 ft. wide, and 7 in. thick), a 4-ft. belt, then twelve pilasters (12 ft. high, 18 in. wide, and 7 in. thick), a cornice, and a parapet wall.
A steel tank of the ordinary type is embedded in the upper 40 ft. of this cylinder. To form the bottom of this tank, a plain concrete dome is thrown across the cylinder at a point about 70 ft. from the base, the thrust of this dome being taken up by two steel rings, 1/2 in. by 14 in. and 3/8 in. by 18 in., bedded into the walls of the tower, the latter ring being riveted to the lower course of the tank.
The tank is covered with a roof of reinforced concrete, 4 in. thick, conical in shape, and reinforced with 1/2-in. twisted steel bars. The design of the structure is clearly shown in Fig. 1.
The tower is built on out-cropping, solid rock. This rock was roughly stepped, and a concrete sub-base built. This sub-base consists of a hollow ring, with an inside diameter of 20 ft., the walls being 5 ft. thick. It is about 2 ft. high on one side and 7 ft. high on the other, and forms a level base on which the tower is built. The forms for this sub-base consist of vertical lagging and circumferential ribs. The lagging is of double-dressed, 2 by 3-in. segments, and the ribs are of 2 by 12-in. segments, 6 ft. long, lapping past one another and securely spiked together to form complete or partial circles. These ribs are 2 ft. from center to center.
[Illustration: FIG. 1.--(Full page image)
WATER TOWER VICTORIA, B.C. WATER-WORKS]
Similar construction was used to form the taper base of the tower proper, except, of course, that the radii of the segments forming the successive ribs decreased with the height of the rib. Tapered lagging was used, being made by double dressing 2 by 6-in. pieces to 1-3/4 by 5-13/16 in., and ripping on a diagonal, thus making two staves, 3 in. wide at one end and 2-3/4 in. wide at the other. This tapered lagging was used again on the 4-ft. belt and cornice forms, the taper being turned alternately up and down.
[Illustration: FIG. 2.--FORMS FOR WATER TOWER VICTORIA, B.C.]
The interior diameter being uniform up to the bottom of the dome, collapsible forms were used from the beginning. These forms were constructed in six large sections, 6 ft. high, with one small key section with wedge piece to facilitate stripping, as shown in Fig. 2. There were three tiers of these, bolted end to end horizontally and to each other vertically.
Above the taper base and except in the 4-ft. belt and cornice, collapsible forms were used on the outside also. There were six sections extending from column to column and six column sections, all bolted together circumferentially and constructed as shown in Fig. 2. Three tiers of these were also bolted together both vertically and horizontally.
Having filled the top tier, the mode of operation was as follows:
All horizontal bolts in the lower inside and outside forms were removed, as was also the small key section on the inside; this left each section suspended to the corresponding one immediately above it by the vertical bolts before mentioned. It is thus seen that in each case the center tier performed the double duty of holding the upper tier, which was full of green concrete, and the sections of the lower tier, until they were hoisted up and again placed in position to be filled.
These lower forms were then hoisted by hand--four-part tackles being used--and placed in position on the top forms, their bottom edges being carefully set flush with the top edge of the form already in position, and then bolted to it. On the outside, the column forms, and on the inside, the wedge and key sections were set last. A 3-lb. plumb-bob on a fine line was suspended from the inner scaffold and carefully centered over a point set in the rock at the base. This line was in the exact center of the tower, and the tops of all the forms, after each shift, were carefully set from it by measurement, thus keeping the structure plumb.
The first 23 in. of the barrel of the tower was moulded with special outside forms, constructed so as to form the bases of
Continue reading on your phone by scaning this QR Code

 / 11
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.